Synthesis and structure of platinum(II) complexes with mixed Ph₂PNHP(O)Ph₂/[Ph₂PNP(O)Ph₂] or Ph₂PC₆H₄NH₂/[Ph₂PC₆H₄NH] hybrid ligands: new M-P-N-H···N-P metallacycles

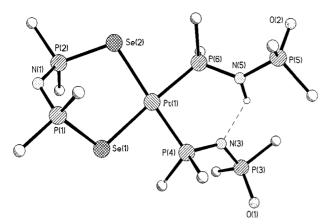
Martin B. Smith*a and Alexandra M. Z. Slawinb

Letter

- ^a Department of Chemistry, Loughborough University, Loughborough, Leics., UK LE11 3TU. E-mail: m.b.smith@lboro.ac.uk
- ^b School of Chemistry, University of St. Andrews, St Andrews, Fife, UK KY16 9ST

Received (in Cambridge, UK) 15th October 1999, Accepted 9th December 1999

Transmetallation of $K[Ph_2P(E)NP(E)Ph_2]$ (E = S or Se) with cis-[PtCl₂(HL)₂] [HL = Ph₂PNHP(O)Ph₂-P] gave the mixed platinum(II) compounds [Pt{Ph₂P(E)NP(E)Ph₂-E,E'}L(HL)] containing one deprotonated [Ph₂PNP(O)Ph₂] ligand; X-ray crystallography reveals an unusual pseudo six-membered Pt-P-N-H···N-P metalloring structure.

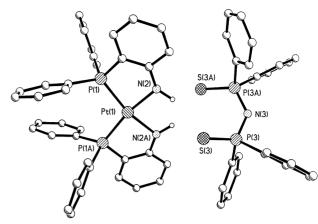

The chemistry of hybrid ligands, bearing both "hard" (e.g. N, O) and "soft" (e.g. P) donor centres, is an area that has received considerable attention of late. 1-3 Their ability to coordinate catalytically useful transition-metals and subsequent application in several metal-catalysed transformations continues to be demonstrated. Much of their success can be traced to the relatively strong M-P bond whilst facile dissociation of N or O from M creates a suitable vacant site. Recently the synthesis and co-ordination chemistry of a new heterodifunctional ligand Ph2PNHP(O)Ph2, HL, was reported.4 Two ligating modes exist for this hybrid ligand, the most prevalent is P-ligation although P,O-chelation has frequently been observed.⁴⁻⁸ The amine proton in metal co-ordinated compounds of HL can be removed to give [Ph₂PNP(O)Ph₂]⁻, L. Altogether three different coordination types for L have been found namely P-co-ordination, P,O-chelation and P,O-bridging.4-8 One feature common with much of the chemistry of P-monodendate complexes of L and HL is the propensity for N-H···X (X = Cl, Br or O) H-bonding. Here we describe the synthesis and characterisation of two unexpected platinum(II) complexes containing a single deprotonated [Ph₂PNP(O)Ph₂] stabilised by an intramolecular H-bond from a neighbouring cis-bound Ph₂PNHP(O)Ph₂ ligand. The hydrogen bonded moiety M-P-N-H···N-P presented here has not, to the best of our knowledge, been reported previously. Related metal complexes with a chelating M-P-O-H···O-P hydrogen bonding array are well known and in many cases the OH···O bridge approaches a symmetrical disposition between the two oxygen atoms.⁹ Nixon and co-workers¹⁰ recently described the unusual complex [PtCl₂(PMe₃)(P₂O₃C₃H₅Bu^t₃)] which, in the solid state, has a dimeric structure with bridging M-P-O···H···O-P-M hydrogen bonds.

The synthesis of such a square-planar metal complex bearing a *cis* configuration of neutral/deprotonated HL/L ligands appears somewhat challenging. In prior work we showed that reaction of *cis*-[PtCl₂(HL)₂] 1 with KOBu¹ affords the bis-P,O-chelate complex *cis*-[Pt{Ph₂PNP(O)Ph₂-P,O}₂]⁴ whilst attempts to prepare [Pt{Ph₂PNP(O)Ph₂-P,O}Cl{Ph₂PN-P(O)Ph₂-P}] using stoichiometric amounts of KOBu¹ were unsuccessful. An insight into how such a

transformation may be accomplished came from recent work synthesis of ΓPt{Ph₂PC₆H₄NHdescribing the P,N{ $P_2PC_6H_4NH_2-P,N$ }][$Ph_2P(O)NP(E)Ph_2$].¹¹ Reaction of 1^4 with one equivalent of $K[Ph_2P(E)NP(E)Ph_2]$ (E = $III)^{12,13}$ S I: E = Segave the new complexes $[Pt{Ph_2P(E)NP(E)Ph_2-E,E'}L(HL)]$ (E = S 2; E = Se 3) in respectable yields [eqn. (1)].† Alternatively when [PtCl₂(cod)] (cod = cycloocta-1,5-diene), HL and I (1:2:1 ratio) were allowed to react in CH₃OH, compound 2 was isolated in slightly higher yield (86%). Whilst the stoichiometry of the reaction necessitates the use of two equivalents of K[Ph₂P(E)NP(E)Ph₂] we found that when the reaction was performed on a 1:1 ratio of 1: K[Ph₂P(E)NP(E)Ph₂], a cleaner sample [free of Ph₂P(E)NHP(E)Ph₂ as intimated by ³¹P-{¹H} NMR] was obtained.

The spectroscopic and analytical data are in full agreement with the proposed structures.‡ Hence the ³¹P-{¹H} NMR spectra for 2 and 3 show three P environments for the PIII, PO and PE centres. Presumably in solution the equivalence of the two PIII centres may be a consequence of fast proton exchange between the two nitrogen atoms of the neutral HL and deprotonated L ligands. Crystals of 3 suitable for single crystal X-ray crystallography were obtained from CDCl₃-petroleum ether (bp 60-80 °C).§ The crystal structure of 3 · CHCl₃ (Fig. 1) reveals the platinum(II) centre to be co-ordinated by a didentate [Ph₂P(Se)NP(Se)Ph₂]⁻, a deprotonated $[Ph_2PNP(O)Ph_2]^-$ and a neutral $Ph_2PNHP(O)Ph_2$ ligand in an approximately square-planar environment [Se(2)-Pt(1)-P(6) 84.58(8), Se(1)-Pt(1)-P(4) 84.97(8), P(4)-Pt(1)-P(6) 92.8(1) 98.49(4)°]. Se(1)-Pt(1)-Se(2)The [Ph₂PNP(O)Ph₂] and Ph₂PNHP(O)Ph₂ ligands are locked into a six-membered Pt-P-N-H···N-P platinacycle by an intramolecular N-H···N hydrogen bond $[N(5) \cdots N(3) 2.78,$ $H(5n)\cdots N(3)$ 2.01 Å, $N(5)-H(5n)\cdots N(3)$ 134°] and which accounts for the anti conformation of the NH and PO oxygen in HL. The Pt-Se bond distances [Pt(1)-Se(1) 2.521(1), Pt(1)-Se(2) 2.520(1) Å are longer than in the complex [Pt{Ph₂P(Se)NP(Se)Ph₂-Se,Se'}₂] · CHCl₃ [Pt(1)–Se(1) 2.425(2), Pt(1)–Se(2) 2.445(2) Å]. The Pt–P [Pt(1)–P(4)

$$\begin{array}{c} Ph \stackrel{Ph}{Ph} \\ Ph \stackrel{Ph}{Ph} \\$$



[Pt{Ph₂P(Se)NP(Se)Ph₂-Se,Se'}-Fig. 1 Crystal structure of (Ph₂PNP(O)Ph₂-P){Ph₂PNHP(O)Ph₂-P}] 3 (only the *ipso* C atoms shown, C-H hydrogen atoms and solvent molecule omitted for clarity). Selected bond distances (Å) and angles (°): Pt(1)-Se(1) 2.521(1), Pt(1)-Se(2) 2.520(1), Se(1)-P(1) 2.190(3), P(1)-N(1) 1.563(9), N(1)-P(2) 1.605(9), P(2)-Se(2) 2.188(3), Pt(1)-P(4) 2.271(3), Pt(1)-P(6) 2.267(3), P(4)-N(3) 1.643(9), N(3)-P(3) 1.634(9), P(3)-O(1) 1.463(8), P(6)-N(5) 1.643(9), N(5)-P(5) 1.64(1), P(5)-O(2) 1.480(9); Se(1)-Pt(1)-Se(2) 98.49(4), Se(1)-Pt(1)-P(6) 173.57(9), Se(2)-Pt(1)-P(4) 171.55(9), P(4)-P(1)-P(6) 92.8(1), P(1)-Se(1)-P(1) 103.98(9), Se(1)-P(1)-N(1)116.2(4), P(1)-N(1)-P(2) 123.8(6), N(1)-P(2)-Se(2) 112.8(4), P(2)-Se(2)-Pt(1) 104.95(9), Pt(1)-P(4)-N(3) 114.0(3), P(4)-N(3)-P(3) 131.9(6), N(3)-P(3)-O(1) 118.4(5), Pt(1)-P(6)-N(5) 116.3(4), P(6)-N(5)-P(5) 132.5(6), N(5)-P(5)-O(2) 117.3(5).

2.271(3), Pt(1)–P(6) 2.267(3) Å] bond lengths are indistinguishable for the protonated/deprotonated ligands and in the range previously documented for complexes with either ligands. Interestingly the P–N/N–P bond distances for the protonated/deprotonated ligands in 3 are similar [P(4)–N(3) 1.643(9), N(3)–P(3) 1.634(9) Å for L; P(6)–N(5) 1.643(9), N(5)–P(5) 1.64(1) Å for HL] but shorter than in HL which exists in the solid state as a H-bonded dimer pair [P(1)–N(1) 1.651(3), P(2)–N(1) 1.707(3) Å]. The P–N–P angles (ca. 132°) are somewhat enlarged as would be anticipated for terminal bound ligands. Within the Se–P–N–P–Se metallacycle, the bond lengths and angles are consistent with π delocalisation.

Preliminary experiments suggest that the other N-H proton cannot be removed even with excess NEt₃. In contrast the metal alkoxides KOBu^t or NaOMe smoothly deprotonate this NH proton affording new phosphorus containing species whose precise identity is currently under investigation and will be reported later.

We recently described that selective deprotonation of a primary N-H amine proton in "PtCl₂(Ph₂PR)₂" (R = $o-C_6H_4NH_2$ with the unsymmetrical ligands $K[Ph_2P(O)NP(E)Ph_2]$ (E = S)or Se) affords mixed complexes [Pt(Ph₂PC₆H₄NH-P,N)(Ph₂PC₆H₄NH₂-P,N)][Ph₂P(O)NP(E)Ph₂]. Likewise I reacts similarly with "PtCl₂(Ph₂PR)₂" (generated in situ from [PtCl₂(cod)] and 2 equivs. Ph₂PR) to give the mixed complex [Pt(Ph₂PC₆H₄NH- $P,N)(Ph_2PC_6H_4NH_2-P,N)[Ph_2P(S)NP(S)Ph_2]$ 4 in good yield.† The corresponding reaction with "PdCl₂(Ph₂PR)₂' and I (or II) under analogous conditions gave only the known [Pd{Ph₂P(E)NP(E)Ph₂}₂] complexes with displacement of both Ph₂PC₆H₄NH₂ ligands. This difference may reflect the greater lability of palladium(II) over platinum(II). In the crystal structure of 4 (Fig. 2) the molecule is disposed about a crystallographic twofold axis on which Pt(1) and N(3) lie. The platinum(II) centre is cis coordinated by a P,N-chelating Ph₂PC₆H₄NH₂ ligand and a deprotonated [Ph₂PC₆H₄NH] ligand in a near square-planar geometry [N(2)-Pt(1)-P(1) N(2)-Pt(1)-N(2A)87.7(3), P(1)-P(1)-P(1A)83.47(13), 106.53(6)°]. The [Ph₂P(S)NP(S)Ph₂] anion is perpendicular to the cation and involved in bifurcated hydrogen bonding with the NH protons of the cis-coordinated ligands

 $\begin{array}{llll} \textbf{Fig. 2} & \text{Crystal structure of } \big[\text{Pt}(\text{Ph}_2\text{PC}_6\text{H}_4\text{NH-}\textit{P},N) \big] \text{PP}_6\text{H}_4\text{NH}_2-\textit{P},N) \big] \big[\text{Ph}_2\text{P}(\text{S})\text{NP}(\text{S})\text{Ph}_2 \big] & \textbf{4} & \text{(C-H hydrogen atoms omitted for clarity)}. \\ & \text{Selected bond distances (Å) and angles (°): } & \text{Pt}(1)-\text{N}(2) \\ & 2.056(4), & \text{Pt}(1)-\text{P}(1) & 2.2481(11), & \text{S}(3)-\text{P}(3) & 1.983(2), & \text{P}(3)-\text{N}(3) & 1.599(2); \\ & \text{N}(2)-\text{Pt}(1)-\text{N}(2\text{A}) & 87.7(3), & \text{N}(2)-\text{Pt}(1)-\text{P}(1), & 83.47(13), & \text{N}(2)-\text{Pt}(1)-\text{P}(1\text{A}) & 167.62(12), & \text{P}(1)-\text{Pt}(1)-\text{P}(1\text{A}) & 106.53(6), & \text{S}(3)-\text{P}(3)-\text{N}(3), & 120.8(2), \\ & \text{P}(3)-\text{N}(3)-\text{P}(3\text{A}), & 133.3(3). \\ \end{array}$

[N(2)···S(3) 3.46, H(2n)···S(3) 2.67 Å, N(2)–H(2n)···S(3) 139°; N(2)···S(3A) 3.43, H(2n)···S(3A) 2.80 Å, N(2)–H(2n)···S(3A) 123°]. In the uncomplexed anion the S–P and N–P bond distances are consistent with delocalisation within the S–P–N–P–S backbone.

In conclusion, we have shown that chloride metathesis of 1 with the potassium salts I (or II) affords 2 (or 3) respectively. Further reactivity studies are underway and will be reported in due course.

Acknowledgements

We should like to thank the EPSRC Mass Spectrometery Service Centre at Swansea and Johnson Matthey plc for the generous loan of precious metal salts.

Notes and references

† Compound 1 was prepared as described in ref. 4. A typical synthesis is illustrated here for compound 2. To the solids *cis*-[PtCl₂{Ph₂PNHP(O)Ph₂-P}₂] (0.404 g, 0.378 mmol) and K[Ph₂P(S)NP(S)Ph₂] (0.185 g, 0.379 mmol) was added CH₃OH (10 cm³). After stirring the suspension for 3 h, the solid was collected by suction filtration and dried *in vacuo* (0.119 g). This solid was shown by 31 P-{ 1 H} NMR to be 2. To the filtrate was added dropwise distilled water and the solid 2 precipitated, was collected by suction filtration and dried *in vacuo*. Overall yield: 0.368 g, 66%. In a similar manner 3 was likewise prepared (68%). Compound 4 was synthesised as follows. To a solution of [PtCl₂(cod)] (cod = cycloocta-1,5-diene) (0.025 g, 0.067 mmol) and Ph₂PC₆H₄NH₂ (0.037 g, 0.133 mmol) in CH₃OH (1.5 cm³) was added K[Ph₂P(S)NP(S)Ph₂] (0.068 g, 0.139 mmol) to give an orange suspension. After stirring the suspension for *ca*. 1 h, the solid was collected by suction filtration. Slow diffusion of CH₃OH into a CHCl₃ solution of this solid over several days gave 4 (0.064 g, 80%).

; Selected spectroscopic data for complexes 2–4. For 2: $^{31}P_{-1}^{-1}H_1$ NMR (CDCl₃, referenced to 85% H_3PO_4): δ 37.6, $^{1}J(PtP)$ 3890 (PPh₂N); 34.2, $^{2}J(PtP)$ 61, $^{3}J(PP)$ 8 (Ph₂PS); 16.8, $^{3}J(PtP)$ 147, $^{2}J(PP)$ 29 Hz (Ph₂PO). $^{195}Pt_{-1}^{-1}H_1$ NMR [referenced to external H_2PtCl_6 (in $D_2O-HCl)$]: δ –4548. ^{1}H NMR: δ 10.40 (NH), 7.99–6.92 (arom. H). IR (KBr): 3667 (v_{OH}), 3333, 3215 (v_{NH}), 578, 572 cm $^{-1}$ (v_{PS}). FAB MS: m/z 1447 (M $^{+}$). $C_{72}H_{61}N_3O_2P_6S_2Pt\cdot H_2O$ requires C 59.10, H 4.40, N 2.85. Found C 58.70, H 4.20, N 2.80%. For 3: $^{31}P_{-1}^{-1}H_1$ NMR (CDCl₃): δ 36.1, $^{1}J(PtP)$ 3853 (PPh₂N); 26.4, $^{1}J(PSe)$ 520, $^{2}J(PtP)$ 66, $^{3}J(PP)$ 12.5 (Ph₂PSe); 16.5, $^{3}J(PtP)$ 141, $^{2}J(PP)$ 30 Hz (Ph₂PO). $^{195}Pt_{-1}^{-1}H_1$ NMR: δ –4689. ^{1}H NMR: δ 10.50 (NH), 8.05–6.94 (arom. H). IR (KBr): 3668 (v_{OH}), 3332, 3213 (v_{NH}), 540 cm $^{-1}$ (v_{PS}). FAB MS: m/z 1539 (M $^{+}$). $C_{72}H_{61}N_3O_2P_6S_2Pt\cdot H_2O$ requires C 55.55, H 4.10, N 2.70. Found C 55.25, H 3.95, N 2.75%. For 4: $^{31}P_{-1}^{-1}H_1$ NMR (CDCl₃): δ 50.4 (SPPh₂); 27.5, $^{1}J(PtP)$ 3075 Hz (PPh₂). $^{195}Pt_{-1}^{-1}H_1$ NMR (CDCl₃): δ 50.4 (SPPh₂); 27.5, $^{1}J(PtP)$ 3075 Hz (PPh₂). $^{195}Pt_{-1}^{-1}H_1$ NMR (CDCl₃): δ 50.4 (SPPh₂); 27.5, $^{1}J(PtP)$ 3075 Hz (PPh₂).

NH). IR (KBr): 3341 (v_{NH}), 578 cm $^{-1}$ (v_{PS}). ES MS: m/z 1198 (MH+). C₆₀H₅₁N₃P₄S₂Pt requires C 60.20, H 4.30, N 3.50. Found C 60.05, H 4.15, N 3.55%.

8 Crystal data for 3: C₇₂H₆₁N₃O₂P₆PtSe₂·CHCl₃, *M* 1658.52, monoclinic, space group $P2_1/n$, a=24.754(3), b=31.372(9), c=11.241(5) Å, $\beta=103.19(2)^\circ$; U=8500(5) Å³, $D_c=1.296$ g cm⁻³, λ (Cu-Kα) = 1.54178 Å, Z=4, $\mu=6.195$ mm⁻¹, T=293 K, R1=0.058 for 12 958 unique reflections. Crystal data for 4: C₆₀H₅₁N₃P₄PtS₂, *M* 1197.13, monoclinic, space group C2/c, a=18.1036(1), b=14.8333(3), c=19.6519(4) Å, $\beta=101.81(1)^\circ$; U=5165.5(2) Å³, $D_c=1.539$ g cm⁻³, λ (Mo-Kα) = 0.710 73 Å, Z=4, $\mu=2.965$ mm⁻¹, T=293(2) K, R1=0.0314 for 3712 unique reflections. Data were collected either on a Rigaku AFC7S or Bruker SMART diffractometer. The N–H proton in compound 3 was located from a Δ*F* map, whilst in compound 4, the remaining N–H proton could not be located because of static disorder and crystallographic symmetry. CCDC reference number 440/160.

- For recent examples see: K. K. Hii, M. Thornton-Pett, A. Jutand and R. P. Tooze, Organometallics, 1999, 18, 1887; N. J. Hovestad, E. B. Eggeling, H. J. Heidbüchel, J. T. B. H. Jastrzebski, U. Kragl, W. Keim, D. Vogt and G. van Koten, Angew. Chem., Int. Ed., 1999, 38, 1655.
- 2 G. R. Newkome, Chem. Rev., 1993, 93, 2067.
- 3 A. Bader and E. Lindner, Coord. Chem. Rev., 1991, 108, 27.
- 4 P. Bhattacharyya, A. M. Z. Slawin, M. B. Smith and J. D. Woollins, *Inorg. Chem.*, 1996, 35, 3675.

- 5 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 1283.
- 6 M. B. Smith, A. M. Z. Slawin and J. D. Woollins, *Polyhedron*, 1996, 15, 1579.
- 7 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 4567.
- A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 4575.
- L. R. Falvello, J. Forniés, A. Martín, J. Gómez, E. Lalinde, M. T. Moreno and J. Sacristán, Inorg. Chem., 1999, 38, 3116; B. Patel, S. J. A. Pope and G. Reid, Polyhedron, 1998, 17, 2345; C. G. Arena, F. Nicoló, D. Drommi, G. Bruno and F. Faraone, J. Chem. Soc., Dalton Trans., 1996, 4357; J. Powell, M. J. Horvath and A. Lough, J. Chem. Soc., Dalton Trans., 1995, 2975; D. E. Berry, K. A. Beveridge, G. W. Bushnell and K. R.DixonCan. J. Chem. 198563, 2949.
- 10 S. B. Clendenning, P. B. Hitchcock and J. F. Nixon, Chem. Commun., 1999, 1377.
- 11 A. M. Z. Slawin and M. B. Smith, New J. Chem., 1999, 23, 777.
- 12 I. Haiduc, in *Inorganic Experiments*, ed. J. D. Woollins, VCH, Weinheim 1994
- P. Bhattacharyya, J. Novosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 1607

Letter a908282d